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Abstract

A formula is derived, which allows efficient analytical
evaluation of the long range beam-beam tune shifts and
chromaticities with amplitude. It assumes that the beams
are infinitely short, oppositely charged, and with Gaussian
transversal profile. The formula employs an infinite sum
with favorable convergence rates, making it well suited es-
pecially for the long range case. Applications to the Teva-
tron are presented, including some proposed compensation
schemes and their effect on the dynamic aperture.

1 INTRODUCTION

Beam-beam interactions play a major role in circular col-
liders, as, for example, the Tevatron’s Run II [1]. Tune
shifts with amplitude are used to quantitatively character-
ize the strength of these interactions, which can be head on,
or long range. The amplitude (and parameter) dependent
tune shifts to any order can be easily determined analyti-
cally from the map of a system using Differential Algebraic
methods [2, 3], if the potential has a good polynomial ap-
proximation (usually the Taylor expansion). Unfortunately,
the beam-beam potential does not admit a rapidly converg-
ing polynomial expansion for amplitudes of practical inter-
est. As a consequence of this form of the potential, compu-
tation of the amplitude dependent tune shift often requires
tracking and subsequent postprocessing. Therefore, an an-
alytical formula would be useful for the fast evaluation of
the tune shifts, and would provide insight into the structure
of the beam-beam effects. Moreover, an analytic formula
for the computation of the amplitude dependent tune shifts
can be readily modified to provide a useful tool for the de-
termination of the amplitude dependent chromaticities.

The expression for head on tune shift is well known
[4], and an approximation for the long range tune shifts
of round beams, which is valid in the large separation and
small amplitude case, has been derived in [5]. In this note,
we show that a formula can be derived for the tune shift
that is always valid, and its evaluation is reduced to setting
the truncation order in a reasonably fast converging infinite
series, and a quadrature. All operations can be readily and
quickly performed in, for example, Mathematica. The next
few sections present the formulae, and the theory applied to
the Tevatron. Some compensation schemes are proposed,
and their effect on the dynamics is checked by tracking.

2 TUNE SHIFT AND CHROMATICITY
FORMULAE

Technically, the amplitude dependent tune shift is the ad-
vance in angle along a torus in normal form space, where a
particle moves with amplitude dependent frequency. Thus,
the first step of the computation must be the transformation
to normal form. In the Differential Algebraic picture, the
transfer map is subjected to this transformation, while here,
since the map is not easily computed, the transformation is
applied directly to the Hamiltonian. Assuming a linearly
dominated regime, it should be a very good approximation
to make only a first order normal form transformation, and
then take an average over the angles.

Assuming that the beam-beam interaction is the only
perturbation to an otherwise simple harmonic motion with
frequencies(νx0, νy0), the Hamiltonian is

H = νx0Jx + νy0Jy + U (Jx, φx; Jy, φy) δ (θ − θc) , (1)

whereδ (θ) is the Dirac delta function, andθ is the inde-
pendent variable. The delta function signifies that we ne-
glect bunch length effects, and the interaction happens at
a single collision pointθc. Introducing the tune shift as
∆νi = νi − νi0, wherei stands forx or y, from Hamilton’s
equations of motion we obtain that the average change in
phase advance is given by the following formula:
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2.1 The Tune Shift Formula

For details on performing the integrals over the angles
see [7]. The final expression for the horizontal amplitude
dependent tune shift is
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As shorthand notations we introduced the ratio of rms beam
sizesr = σy/σx, and dimensionless variables for the am-
plitudes and separations according toax =

√
2βxJx/σx,

dx = Dx/σx and similarly defineday and dy. Using
these notations, the following relationships have been used
in (3): px = v

(
a2

x + d2
x

)
/2, rx = va2

x/2, sx = vaxdx,

py = fv
(
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)
/2, ry = fva2

y/2, sy = fvaydy,where

f = r2

v(r2−1)+1 . The vertical amplitude dependent tune
shift is derived analogously, due to symmetry inx andy.

In the zero amplitude (ax = ay = 0) and round beam
(r = 1) case the integral can be done analytically to give
(with d2 = d2

x + d2
y and the beam-beam parameterξ)
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ax,ay→0

∆νx = ξ
2
d4

{
e−

d2
2

[
d2

xd2 +
(
d2

x − d2
y

)]
− (

d2
x − d2

y

)
}

.

(6)

2.2 The Chromaticity Formula

It is rather straightforward to include chromatic effects
into (3), to provide a formula for the computation of the
chromaticities. To this end, we split the separation into two
parts: one due to the closed orbits of on-momentum parti-
cles, the other due to dispersion for off-momentum parti-
cles. Denoting the dispersion (in units of rms beam size)
at the location of the interaction byη, first we make the
following replacements in (3):dx 7→ dx + ηxδ, dy 7→
dy + ηyδ, whereδ is the relative momentum or energy de-
viation. By definition, the linear chromaticities are given

by Q
′
x = ∂∆νx

∂δ

∣∣
δ=0

, Q
′
y = ∂∆νy

∂δ

∣∣∣
δ=0

.

Using the symbolic capabilities of Mathematica, the
derivative can be calculated symbolically, and then eval-
uated numerically. To this end, the horizontal chromaticity
is given by

Q
′
x = − 2πC
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where

A = 2dx (dxηx + dyηyf) vIk−1 (sx)
− ax (3dxηx + 2dyηyf) vIk (sx)
+ 2ηx

(
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xv − k − 1
)
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B = 2ayηyfv (axIk (sx) − dxIk−1 (sx)) . (8)

The vertical chromaticity can be calculated similarly.
The chromaticity formula is greatly simplified in the

vanishing amplitude, round beam, and large separation

case. It is given by
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3 APPLICATIONS TO THE TEVATRON

The tune shifts in the Tevatron are different from bunch
to bunch [1]. For onēp bunch(# 6), using as separations
the distances between the closed orbits at all the72 en-
counters, we computed the amplitude dependent tune shifts
using (3) and summed up over all collisions. Inspection
of the separations reveals that over the70 long-range in-

teractions6 /
∣∣∣~d ∣∣∣ / 14 which entail tune shifts of dif-

ferent signs. Computing the tune shifts at amplitudes of
(ax, ay) = (6, 6), we obtained the distribution depicted in
Figure 1 (for the horizontal case; the vertical case is sim-
ilar). The distributions look similar for intermediate am-
plitudes. The maximum long range tune shifts are encoun-
tered at the interactions which are closest to the interaction
points. Using tune shift information from intermediate am-
plitude values, we got the tune footprint shown in Figure
2. Overall, there is a good agreement with tracking results
[1]; the maximum difference is about10−3.
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Figure 1: Horizontal amplitude dependent tune shifts of a
particle with amplitudes(ax, ay) = (6, 6). Head on colli-
sions happen at interaction numbers 30 and 54, while max-
imum long range tune shifts are at interaction numbers 55
and 31.
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Figure 2: Tune footprints corresponding to all72 interac-
tions. Shown is a superposition of the analytical results
with the tune footprints obtained by FFT of tracking data.

Among the long range collisions the nearest parasitic in-
teractions dominate the tune shift contribution to the foot-
print. However, this is not true for the chromaticities. It
can be shown [7] that the head on interactions do not gen-
erate linear chromatic effects, even if the dispersion does



not vanish. The relative importance of the nearest para-
sitics and all long range can be seen from Figure 3. It is
clear that the nearest parasitics are dominated by the rest of
the parasitics.
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Figure 3: Comparison of two chromaticity footprints: (i)
Nearest parasitics only. (ii) All beam-beam interactions in-
cluded.

3.1 Correction schemes

Since tracking shows that the nearest parasitics dominate
the nonlinear dynamics, we concentrated on these interac-
tions only. We developed some compensation schemes for
the tune and chromaticity footprints, and performed some
studies aimed at unveiling correlations, if any, between this
group of long range beam-beam interactions and the dy-
namic aperture.

The correction schemes are based on minimization of the
footprints, by compensating for the aspect ratios or disper-
sions. The corresponding conditions were derived from the
zero amplitude expressions of the appropriate relations, and
hence it was not obvious a priori that the conditions are
useful for non-zero amplitudes, the case which is too cum-
bersome to treat it analytically. For more details we refer
the reader to [7]. However, compensation of aspect ratios
clearly reduces both the shift and the spread of the tunes, as
can be seen in Figure 4. On the other hand, compensation
of aspect ratios does not have a dramatic effect on the chro-
maticity footprint. Perhaps more importantly, aspect ra-
tio compensation does not harm the chromaticity footprint.
The chromaticity footprint is mainly affected by compen-
sation of the dispersions; there is a significant reduction in
the size of the footprint. The results are contained in Figure
5.

Unfortunately, the tracking with the corrected footprints
does not show the dramatic improvements in DA of the
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Figure 4: Tune footprint compensation of the nearest para-
sitic beam-beam interactions by aspect ratio compensation.
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Figure 5: Chromaticity footprint compensation of the near-
est parasitic beam-beam interactions by dispersion com-
pensation.

magnitude seen in the footprints. The DA increases by a
maximum amount of around0.6σ.

4 CONCLUSIONS

We derived a useful analytical tool for the computation
of the amplitude dependent tune shifts and linear chro-
maticities due to beam-beam interactions. The expressions
can be used for efficient numerical evaluation at any am-
plitude, separation, dispersion, and aspect ratio. The favor-
able convergence properties make it especially suitable for
studies of the parasitic beam-beam interactions.

We examined the impact of reducing the tune and chro-
maticity footprints of the nearest parasitics on the dynamic
aperture. While the footprints can be significantly reduced
by compensating for aspect ratios or dispersions, their ef-
fect on the dynamic aperture is less than satisfactory. How-
ever, the schemes do point to mechanisms which may in-
crease the stable area available to the beam. For example,
reducing the momentum spread in the beam and the linear
chromaticity in the Tevatron at top energy would be help-
ful.
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